Preliminary communication

STABILE PALLADIUM(II)-STANNYLKOMPLEXE: ALKINYL—HALOGEN AUSTAUSCH ZWISCHEN ALKINYLSTANNANEN UND 1,2-BIS(DIPHENYLPHOSPHINO)ETHANPALLADIUM(II)CHLORID

CARIN STADER und BERND WRACKMEYER*

Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, D-8000 München 2 (B.R.D.) (Eingegangen den 9. Juli 1985)

Summary

The reaction of $(dppe)PdCl_2$ with bis(alkynyl)stannanes yields diynes and the stable palladium(II)-stannyl complexes, dppePd(Cl)SnMe₂Cl and dppePd-(C=CR)SnMe₂Cl, (R = H, Me, t-Bu). The novel compounds are characterized by NMR spectroscopy.

Die Synthese von Bis(diphenylphosphino)ethanpalladium(II), (dppe)Pd^{II})-Acetyliden, aus (dppe)PdCl₂ (1) und Lithium oder Natrium-Acetyliden in flüssigem Ammoniak [1] führt zu Produkten, die bisher kaum charakterisiert sind, und die als instabil in Lösung beschrieben werden. In Anlehnung an unsere ergiebige Synthese von (dppe)Pt-Acetyliden aus dppePtCl₂ und Bis-(alkinyl)stannanen [2], haben wir jetzt versucht, diese Reaktion auf das Palladium zu übertragen.

Wir fanden nun überraschend, dass sich stabile Palladium(II)-stannylkomplexe (3,4) bilden, bei gleichzeitiger Pd-induzierter C—C-Verknüpfung von zwei Alkinylresten [3] zu Diinen (Schema 1a,b). Die Darstellung von 3 und 4 gelingt in hoher Ausbeute (>90%) in zwei Stufen, wobei in der ersten Stufe (Schema 1a) Diine (5) entstehen. Die Untersuchung der Reaktionslösung (³¹P-, ¹¹⁹Sn-NMR) zeigt nahezu vollständigen Umsatz zu 3 an. Beim Versuch, 3 zu isolieren, erhielten wir bisher immer ein Gemisch mit geringen Anteilen von (dppe)PdCl₂. Bei der weiteren Umsetzung von 3 mit 2 (Schema 1b) entstehen keine merklichen Mengen Diin, und es bilden sich die Komplexe 4, welche als reine gelbliche Feststoffe isoliert werden. Insgesamt sind mindestens zwei Äquivalente 2 für die Umwandlung von 1 in 4 erforderlich.

Als beste Erklärung für die beobachteten Produkte 3,4,5 und den stufenweisen Reaktionsverlauf (Schema 1) bietet sich eine Folge von oxidativer

0022-329X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

Ph₂ -P, Pd Cl₂ + Me₂Sn(C≡C-R)₂ Ph₂ a 1 a Ph2 Pd_SnMe2Cl Pd_Cl + R-C=C-C=G-R Ph2 3 5 b + Me₂S∩(C≡C-R)₂ 2 Ph2 -R Pd + Me2 Sn(CI)C=C-R -P C Ph2 Ph2 -R

 $(R = H(a), Me(b), Bu^{t}(c))$

SCHEMA 2

C12

Addition und reduktiver Eliminierung an [4]. Wir schlagen eine Zwischenstufe 6 vor (Schema 2) (die Cl-Liganden können auch in *cis*-Stellung stehen), die aus 1 und 2 entstehen kann. Die reduktive Eliminierung aus 6 führt entweder zu 1 und 2 zurück, oder zu Me₂Sn(Cl)C=CR und (dppe)Pd(Cl)·(C=CR. Für letzteren Komplex haben wir jedoch in zahlreichen Versuchen zu keinem Zeitpunkt Hinweise gefunden, obwohl die δ (³¹P)-Werte (vgl. [1]) charakteristisch sein sollten. Somit ist anzunehmen, dass ein rascher Alkinyl/Halogen-Austausch von 6 zu 7 stattfindet, gefolgt von selektiv bevorzugter Eliminierung des Diins 5 unter Bildung des stabilen Komplexes 3. Die folgenden Befunde stützen diesen mechanistischen Vorschlag:

(i) Die Reaktion nach Sch. 1 ergibt auch in Gegenwart von Hydrochinon als Radikalfänger unter gleichen Bedingungen die Produkte 3, 4, 5, so dass wir einen Radikalmechanismus ausschliessen; (ii) da Komplexe analog zu 3 und 4, und die Diine 5 auch aus 1 und Me₃SnC=CR zu erhalten sind [5], ist eine direkte Eliminierung von Diin aus 2 in Gegenwart von 1 oder aus 6 unwahrscheinlich; (iii) obwohl die Komplexe 3 und 4 auch durch oxidative Addition von Me₂SnCl₂, bzw. Me₂Sn(Cl)C=CMe an einen intermediär gebildeten (dppe)-Pd⁰-Komplex entstehen könnten, spricht die saubere stufenweise Bildung von 3 und 4 in Abhängigkeit des Verhältnisses 1/2 für die in Schema 2 entwickelten Vorstellungen. Ausserdem sollte ein (dppe)Pd⁰-Komplex auch mit den Diinen 5 reagieren, was eine merklich geringere Ausbeute an 3 und 4 bedingen würde. Auch in den ³¹P-NMR Spektren traten keine ³¹P-Signale auf, die man möglichen (dppe)Pd⁰-Diin-Komplexen zuordnen könnte. Sichere Hinweise auf den Mechanismus (oxidative Addition oder $S_E 2$ (cyclisch) [6]) der Bildung von 4 aus 3 und 2 sind noch nicht verfügbar.

Die Komplexe 3, 4 sind gelbe Festkörper, kurzzeitig stabil an der Luft, die sich mit dunkler Farbe in CH₂Cl₂ oder THF lösen. Dort tritt nach ca. 24 h langsam Zersetzung ein, während in CHCl₃ vollständige Zersetzung innerhalb weniger Stunden erfolgt. Die Struktur von 3 und 4 folgt zwingend aus den ¹H-, ¹³C-, ³¹P- und ¹¹⁹Sn-NMR Spektren (vgl. Tab. 1). Besonders indikativ sind die Kopplungskonstanten ²J(¹¹⁹Sn³¹P)_{cis,trans} [7,8] in 3 und 4, sowie ²J(³¹P¹³C)_{cis,trans} in 4.

Die Reaktion nach Schema 1 eröffnet einen neuen Weg zum Aufbau von Pd-Zinn Bindungen, der sich möglicherweise auch für andere Pd-Metall-Bindungen (z.B. Pb, Hg) anbietet. Attraktiv wird auch die Chemie der Verbindungen 3 und 4 sein, die zahlreiche reaktive Zentren besitzen. Bemerkenswert ist schliesslich der Unterschied zu den entsprechenden Reaktionen des (dppe)PtCl₂ [2]. Diese verlaufen vermutlich nach dem gleichen Mechanismus bis zur Zwischenstufe analog zu 7. Dann wird jedoch selektiv die reduktive Eliminierung von Me₂SnCl₂ gegenüber der Eliminierung von Diin bevorzugt.

Experimenteller Teil

NMR Spektren wurden mit einem Bruker WP 200 Spektrometer registriert (vgl. Tab. 1). Alle Reaktionen wurden unter N_2 -Atmosphäre in getrockneten Lösungsmitteln durchgeführt. Die Ausgangsverbindungen 1 (aus dem Bis-(benzonitril)PdCl₂ und dppe) [9,10] und 2a [11], b,c [12] erhielten wir nach modifizierten Literaturvorschriften.

	(dppe)Pd(SnMe ₂ Cl)Cl (3)	(dppe)Pd(SnMe ₂ Cl)C≡CH (4a)	(dppe)Pd(SnMe ₂ Cl)C≡CMe) (4b)	(dppe)Pd(SnMe₁Cl)C≡C-t-Bu (4c)
[(2 ₁ 4 ₁ 8) <i>f</i>] (H ₁ ¹ 0,1 ³ <i>f</i>)]	0.84 ^d (SnCH ₃) (47.0)	0.67 ^d (SnCH ₃); 1.99 (CH) (47.6) [3.4 trans ^e 5.2 cis e]	0.67 d (SnCH ₃); 1.99 (GH ₃) (47.6) [1.5 trans ^e , 3.7 cie ^e]	0.73 ^d (SnCH ₃); 1.24 (t-Bu) (47.6)
δ(¹³ C) (J(¹¹ 'Sn ¹³ C)) [J(³¹ P ¹³ C)]	+3.8 (SnCH _g) (280.0) [1.9, 15.5]	+5.2 (SnCH ₃); 98.2 (PdC); [126.4, 11.5] [1.0, 12.5] 111.9 ^f (CH) [28.3, 5.5]	+4.9 (SnCH ₃): 6.5 (CH ₃): [2.2] [1.0, 12.2] 87.7 (PdC): 122.9 (CCH ₃) [127.0, 10.0] [26.6, 4.4]	
δ(³¹ P) (² J(¹¹⁹ Sn ³¹ P)) [² J(³¹ P ³¹ P)]	59.8 36.7 (197.1) (2445.1) [36.0] [36.0]	53.9 37.8 (147.1)(2287.7) [27.9][27.9]	53.8 36.6 (183.0) (2392.0) [27.7] [27.7]	53.1 & 35.1 & (173.3) (2400.0) [25.6] [25.6]
δ(¹¹⁹ Sn)	171.3	163.1	134.6	122.1 8

4,
**
X
Ę
2
N
М
E
ź
z
£
ŝ
E
ž
5
9
Ę,
ΑI
P.
ER
ρ
(Here here)
13
<u>ل</u>
31
Ú
Ξ.
H
$\tilde{\mathbf{a}}$
à.
a F
ũ
ΑT
ã
B
ž

TABELLE 1

in CD₂Cl₂ in 5 mm (¹H), bzw. 10 mm Rohren bei 27–28°C durchgeführt. ^c Der dppe-Ligand gibt im ¹H-NMR Multiplets im Phenyl-Bereich und zwei Multiplets bei 2.3 und 2.4 ppm für die CH₂-Protonen. In den ¹³C-NMR Spektren sind die Resonanzen für die CH₂-Gruppen getrennt: 34.5, 23.4 (3), 31.7, 25.5 (4a), 31.2, 25.6 (4b). ^d Breit, schärft auf bei ³¹P-Entkopplung. ^e Zuordnung durch selektive ¹H ${}^{31}P$]. Doppelresonanzerzentimente. ^{f 1}J(¹³C¹H) 228.0 ± 0.7 Hz.^g In THF/C₆D₆. ^{μ}Chemische Verschiebungen δ (¹H), δ (¹³C), δ (³¹P) und δ (¹¹Sn) gegen internes (CH₃) (Si, CD₂Cl₂ (¹³C 53.8), externe 85% H₃PO₄, und externes (CH₃) (Si, Kopplungen aus ¹H-NMR ±0.2 H₂, aus ¹³C- und ³¹P-NMR ±0.7 H₂. ^b Wenn nicht anders vermerkt, wurden die Messungen

i

. .

> 1 1

> > ۲ . ۱

> > > : ; ;

> > > > i • •

Bis(diphenylphosphino)ethan-palladium(chlorodimethylstannyl)chlorid (3).Zur Lösung von 0.288 g (0.5 mmol) 1 in 30 ml CH_2Cl_2 wird unter Rühren bei Raumtemperatur eine Lösung von 0.1113 g (0.5 mmol) 2 in 50 ml CH₂Cl₂ im Verlauf von 3 h zugetropft. Die entstandene dunkelbraune, klare Lösung wird, auf 1/3 ihres Volumens eingeengt, in 200 ml Hexan (-20° C) gegossen. Nach Filtration, Waschen mit Hexan und Trocknen i.Vak, erhält man 0.3 g eines gelbbraunen Pulvers. Nach Auflösen dieser Substanz in CH₂Cl₂ zeigt das ³¹P-NMR Spektrum, dass eine Mischung von 3 mit wenig 1 (in verschiedenen Ansätzen ca. 5–15%) vorliegt.

Bis(diphenylphosphino)ethan-palladium(chlorodimethylstannyl)-1-propinid (4b). Eine Lösung von 0.25 g 2b (1.1 mmol) in 30 ml THF wird bei Raumtemperatur mit 0.288 g (0.5 mmol) 1 als Pulver versetzt. Nach ca. 2 h Rühren (bei 4c ca. 12 h) entsteht eine klare, dunkelbraune Lösung, die nach Einengen auf die Hälfte ihres Volumens in 250 ml Hexan (-20°C) gegossen wird. Der gelbe Niederschlag wird abfiltriert, mehrfach mit kaltem Hexan gewaschen und i.Vak. getrocknet: 0.32 g 4b (88%); (gef.: C, 50.7; H, 4.9; Cl, 4.5; C₃₁H₃₃P₂PdSnCl ber.: C, 51.1; H, 4.6; Cl, 4.9%). Die Komplexe 4a,b,c zersetzen sich $>195^{\circ}$ C ohne zu schmelzen.

Dank. Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung.

Literatur

- R. Nast, H.P. Müller und V. Pank, Chem. Ber., 111 (1978) 1627. 1
- A. Sebald und B. Wrackmeyer, Z. Naturforsch. B, 38 (1983) 1156.
- R. Rossi, A. Carpita und C. Bigelli, Tetrahedron Lett., (1985) 523, und dort zitierte Literatur. 3
- 4 J.K. Jawad, R.J. Puddephatt und M.A. Staltieri, Inorg. Chem., 21 (1982) 332 und dort zitierte Literatur.
- 5 Der Komplex (dppe)Pd(SnMe3)Br ist in Lösung bereits sehr labil und kann nur kurzzeitig mit ³¹p-NMR nachgewiesen werden, wogegen der zu 4 analoge Komplex (dppe)Pd(SnMe_)C=CR in Lösung über 12 h stabil ist, bisher jedoch noch nicht in Substanz rein erhalten werden konnte.
- R.J. Cross und J. Gemmill, J. Chem, Soc. Dalton Trans., (1984) 205. P.S. Pregosin und R.W. Kunz, ³¹P- and ¹³C-NMR of Transition-Metal Phosphine Complexes, in P. Diehl, E. Fluck und R. Kosfeld (Hrsg.), NMR - Basic Principles and Progress, Vol. 16, Springer Verlag, Berlin-Heidelberg-New York, 1979.
- 8 B. Wrackmeyer, in G.A. Webb (Hrsg.), Annual Reports NMR Spectroscopy, Vol. 16, Academic Press, New York, 1985, S. 73-185.
- F.R. Hartley, The Chemistry of Platinum and Palladium, Applied Science Publishers, London, 1973, S. 462.
- 10 C.A. McAuliffe and W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979, S. 291-296, und dort zitierte Literatur.
- 11 (a) L, Killian und B. Wrackmeyer, J. Organomet. Chem., 132 (1977) 213; (b) B. Wrackmeyer, in R.B. King und J.J. Eisch (Hrsg.), Organometallic Syntheses, Vol. 3, Elsevier Amsterdam-New York, 1985, im Druck.
- 12 W.E. Davidsohn und M.C. Henry, Chem. Rev., 67 (1967) 73.